IMPLICATION OF FRACTURE DENSITY ON UNSERPENTINIZED ULTRAMAFIC ROCKS TOWARD CHARACTERISTICS OF SAPROLITE ZONE IN SOROWAKO, SOUTH SULAWESI

Setiyo Wibowo 1,2, Mega Fatimah Rosana 2, Agus Didit Haryanto 2
1Exploration, Business Strategic Development & Growth Project Dept, PT. Vale Indonesia
Sorowako, South Sulawesi, Indonesia
2Faculty of Geology, Padjadjaran University
Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
Email: setiyo.wib@gmail.com

ABSTRACT
Usage of nickel-containing materials has increased over time in accordance with economic growth. The largest worldwide nickel resources occur in surface laterite deposits that have formed during chemical weathering of ultramafic rocks where the area that represent one of largest nickel reserves in Indonesia is Sorowako. This study aims to identify the characteristics of saprolite zone on unserpentinized ultramafic-hosted of nickel laterite deposit in Sorowako. Based on depth profile of nickel content in lateritic deposit, it is known that the Ni grades reach a maximum in saprolite zones so that identification of factors affecting the characteristics of saprolite zone is indispensable. Fracture density on ultramafic bedrocks played the important roles during laterisation and each fractures density type has the implication toward the saprolite zones. By classification of fracture density, high to medium fractured types of bedrocks indicated the thick saprolite zone while the low to unfractured types are thinner. Saprolite zones of high to medium fractured type are more silicified than others due to the originality of silica accumulation occupied along opening fractures and joints. High silica content which is commonly present on lower layer of saprolite zone should to be aware especially when the Ni grade still above the cut-off which potentially affected to ore grade dilution.

Keywords: laterite, chemical weathering, ultramafic rocks, saprolite, unserpentinized

ABSTRAK

Kata kunci: laterite, pelapukan kimia, batuan ultramafik, saprolit, takterserpentinisasi
INTRODUCTION

Nickel is often dubbed a hidden metal because of its invisible existence. In fact, nickel is applied over 300,000 objects that are close to human daily life. About 65% of nickel is used in the stainless-steel industry. Cutlery is the most easy-to-find application of stainless steel with the composition of 18% chromium and 10% nickel. Cupronickel as an alloy of copper that contain 75% of copper and 25% of nickel is commonly used as a coin-making material worldwide including the coins used by many people for selling-buying transaction on real market. The world nickel resource on land is approximately 60% in laterites deposit type and the rest of 40% is in sulfide deposit type (USGS Commodity Summaries, 2016). Historically, the abundance of nickel laterites resources is not followed by the large portion of world nickel production that in fact dominated by sulphide deposit. This condition in positive perspective is the opportunity to begin optimizing nickel laterite production through the improvement especially in terms of processing technology. Nickeliferous ores originated from sulfide are typically derived from volcanic or hydrothermal process while laterite ores are formed near the surface following extensive weathering (Mudd, 2009). The large potential resource of nickel which is originated from laterite has been made many researchers working on to understand the weathering process on laterite deposit and supergene enrichment over ultramafic rocks (Burger, 1996; Brand et al., 1998, Gleeson et al., 2003; Butt and Cluzel, 2013). Formation of nickel laterites are influenced by multiple factors including bedrock geology, climate, age of weathering, and geomorphology (Butt and Cluzel, 2013). Nickel laterite development involves dissolution of the primary minerals of the peridotite, which leads to leaching of soluble elements (Si, Mg) and in situ neoformation of mineral phases (mainly oxy-hydroxides) that host the insoluble elements (Fe, Al and Cr) (Quesnel et al., 2017). Based on the chronology, the initial weathering is beginning along fractures and joint in the bedrock. Chemical attack and weathering is also proceeding along joints and fractures in the rock and cleavages and micro-fractures in the crystals. Most commonly serpentines or garnierites can be seen as replacement product of the original mineral or neo-formed in fractures and other rock opening. Silica as diluted material is also deposited along the fractures in the peridotite and will ultimately result in the formation of silica box-work as the peridotite converts to limonite. By these facts, fractures and other opening rocks play an important role in attacking waters and assisting in taking dissolved material away from the weathering system. The process of weathering started along joint and fracture surface and has resulted in the formation of “boulders” within the saprolite zone. Original texture is still recognizable and the weathered profile has not collapsed yet. This paper focuses to assess the implication of fracture density on bedrock in correlation with characteristics of saprolitic horizon distribution and nickeliferous ores especially for unserpentinized ultramafic-hosted.

LOCATION AND GEOLOGICAL SETTING

Sorowako ultramafic complex is located about 600 km from Makassar, a provincial city of South Sulawesi whereas administratively part of East Luwu regency. This ultramafic complex is a part of East Sulawesi Ophiolite (ESO) which is tectonically dismembered and cropped out over 10,000 km² in the eastern Sulawesi (Monnier et al., 1995). East Sulawesi Ophiolites is one of four distinct lithotectonic belts of the K-shape island of Sulawesi. The others from west to east are the West Sulawesi Tertiary Magmatic Arc and associated sediments, the Central Sulawesi Metamorphic Belt and accreted continental fragments of Banggai-Sula islands and Tukang Besi-Buton platforms (Hall and Wilson, 2000; Kadarusman et al., 2004). Ultramafic rocks are the most common constituents of ESO with varieties rocks of lherzolite, harzburgites, dunite and pyroxenites. Peridotite covers 70% of the ophiolite in Sulawesi and Iherzolite is the most abundant and the rest consist of harzburgite and dunite. Sorowako region has unique composition of peridotite which is different with another ophiolite in Sulawesi. Only in Sorowako, the harzburgite and dunite is more dominant than Iherzolite (Kadarusman et al., 2004). In addition, in the Sorowako region, the bedrock is essentially unserpentinized where serpentine being only restricted to border of joints as thin rim or as fine-grained matrix of tectonic breccias (Soeria-Atmadja et al., 1974). Tectonically, Sorowako region has undergone multiple events from Paleogen to Neogen. The area is interconnected with the extreme complex of Matano fault zone. Intimately mixed ultramafic rocks and Mesozoic sediments of mid Miocene subduction mélangé of East Sulawesi rest against the presumably pre- or early Triassic metamorphic complex of eastern Central Sulawesi. The west-northwest trending zone.
of the Matano fault zone has the fault segments that consistently step to left and are associated with the pull-apart basin on Lake Matano along with in-line grabens and sags (Silver et al., 1983, Simandjuntak et al., 1991).

Fig. 1. Geology map of Sulawesi. Inset map shows the principle tectonic provinces (modified from Hall and Wilson, 2000).

METHODS

Linear Fracture Frequency (FF)
The (Linear) Fracture Frequency is basically the ratio of a number of fractures, counted by geologist, divided by the sample length (Seguret & Guajardo, 2015). Parameter of FF is one dimensional of fracture density that useful to characterize the fracture distribution from drilled core. The determination of FF is not easy calculated because of the crushed materials on significant part of actual samples. The simplify equation of linear fracture frequency or called as fracture density from drilled core as follows:

\[FD = \frac{n}{L_T} \times 100\% \]

where:
\(n \) = number of fraction intersection
\(L_T \) = total length of drill run

Rock Quality Designation (RQD)
Rock Quality Designation (RQD) is a semi-quantitative measure of fracture density which can be estimated from core recovery data (Singhal & Gupta, 2010). By original definition, RQD is the length in percent of measured length of the unweather drill core bits longer than 10 cm (Deere, 1988). RQD parameter is a method that more easy and quick to measure by geologist compared with fracture density. This method frequently applied in core logging that often used for measuring the jointing density along the core drill hole. The illustration for calculating RQD from drilled core is shown on Figure 2.
The following simplify equation formulated to for calculating RQD from drilled core.

\[
RQD = \frac{\sum Li}{LT} \times 100\%
\]

where,

- \(Li \) = length of \(i \)-th drill core longer than twice the core diameter,
- \(LT \) = total length of drill run,
- \(N \) = number of core pieces longer than twice the core diameter (used 10cm length)

RESULTS AND DISCUSSION

Lateritic zone

There are two local hills in Sorowako mining area where the study has worked. Topographically, these two hills have similar landform type. All drilled cores as the input data were mainly provided by PT Vale Indonesia that consists of 192 holes (Fig 3). Drilling configuration that has been done has the regular grid pattern of 50 m. Total of 5,368 core samples intercept were produced from this program and all the samples were analyzed using X-Ray Fluorescence spectrometry.

Assay data resulted from the XRF analysis were validated for geological domaining process to determine the layering of laterite zone –limonite, saprolite and bedrock. The example of chemical concentration of laterite layer from drillhole data is shown on Table 1. The important point during determining geological domain on nickel laterite deposit is how to understand the basic geological concept on chemical weathering of nickeliferous lateritic deposit.

In general, the complete profile of nickel laterite deposit consists of three layers: (i) limonite; (ii) saprolite and (iii) bedrock. The base profile mostly consists of unweathered bedrocks as the original rocks prior to weathering. Less part of weathered protolith in bedrock usually occurred within the rock openings or fractures/joints. The incipient weathering is just beginning along these fractures/joints in the rock.

Table 1

Example of chemical concentration of laterite profile

<table>
<thead>
<tr>
<th>Hole_Id</th>
<th>Depth Interval(m)</th>
<th>Fe (%Wt)</th>
<th>SOCl (%Wt)</th>
<th>CuO (%Wt)</th>
<th>Layer Type</th>
<th>Serp Type</th>
<th>Primary Mineral</th>
<th>Secondary Mineral</th>
<th>Tertiary Mineral</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000</td>
<td>0.00-0.30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lmn</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>Out 0.20m</td>
</tr>
<tr>
<td>A001</td>
<td>0.30-1.00</td>
<td>1.30</td>
<td>42.50</td>
<td>8.50</td>
<td>Lmn</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A002</td>
<td>1.00-2.00</td>
<td>1.30</td>
<td>40.50</td>
<td>11.00</td>
<td>Lmn</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A003</td>
<td>2.00-3.00</td>
<td>1.50</td>
<td>37.10</td>
<td>20.70</td>
<td>Lmn</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A004</td>
<td>3.00-4.00</td>
<td>1.57</td>
<td>39.50</td>
<td>29.00</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A005</td>
<td>4.00-5.00</td>
<td>2.29</td>
<td>29.20</td>
<td>25.70</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A006</td>
<td>5.00-6.40</td>
<td>2.33</td>
<td>27.20</td>
<td>20.00</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A007</td>
<td>6.50-8.48</td>
<td>1.26</td>
<td>13.25</td>
<td>10.67</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A008</td>
<td>6.65-8.00</td>
<td>2.19</td>
<td>11.30</td>
<td>12.30</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A009</td>
<td>8.00-9.00</td>
<td>2.13</td>
<td>12.30</td>
<td>16.40</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A010</td>
<td>9.00-10.00</td>
<td>1.96</td>
<td>17.00</td>
<td>17.70</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A011</td>
<td>10.00-11.00</td>
<td>1.78</td>
<td>15.99</td>
<td>15.78</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A012</td>
<td>11.00-12.00</td>
<td>1.78</td>
<td>15.99</td>
<td>16.38</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A013</td>
<td>12.00-13.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A014</td>
<td>13.00-14.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A015</td>
<td>14.00-15.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A016</td>
<td>15.00-16.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A017</td>
<td>16.00-17.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A018</td>
<td>17.00-18.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
<tr>
<td>A019</td>
<td>18.00-19.00</td>
<td>0.51</td>
<td>11.90</td>
<td>28.50</td>
<td>Sap</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td>mnt</td>
<td></td>
</tr>
</tbody>
</table>

lim: limonite; sap: saprolite; brk: bedrock; hrz: harzburgite; hmt: hematite; mng: manganese; gth: goethite; sil: silica; olv: olivine; px=pyroxene; ob=overburden; mgl: medium grade limonite; ssp: soft saprolite; bld: boulder
The overlying layer with mostly brownish yellow in color is saprolite. The layer contains mix-composition between soil and original rock textures and structure that are still preserved. Common observed minerals within the layer are goethite, manganese and silica. Garnierite and silica found within veins or fractures. The division between bedrock and saprolite may not be very sharp due to the variability of “weathering front” contour which penetrates at sites of faults, fractures and major joints. Limonite layer is the top profile on lateritic weathering deposit. The upper part of this zone is rich of hematite and goethite at the lower one. The original textures and structures of rock are completely obliterated due to collapse (see Figure 4).

Fracture frequency distribution
Based on the linear fractures frequency or fracture density and rock quality designation value from drilled core data, the area of study has the different bedrock characteristic between location A and B. Bedrocks on location A is dominated by high to medium fracture frequency. In contrast, location B is mostly characterized by low fractured and even tend to un-fractured.
Plots of fracture data from drilled core on area of study as shown on Fig 5 indicate the different fractures population distribution. The summary statistic of fractures data calculated from the data set is shown in Table 2.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Variable</th>
<th>Location A</th>
<th>Location B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Quality Designation (RQD)</td>
<td>N</td>
<td>105</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1.67</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>76.33</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>34.91</td>
<td>54.49</td>
</tr>
<tr>
<td></td>
<td>S.Dev.</td>
<td>18.19</td>
<td>25.32</td>
</tr>
<tr>
<td>Fracture Density (FD)</td>
<td>Min</td>
<td>1.27</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>100.00</td>
<td>132.16</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>23.73</td>
<td>20.42</td>
</tr>
<tr>
<td></td>
<td>S.Dev.</td>
<td>26.65</td>
<td>29.34</td>
</tr>
</tbody>
</table>

In facts, the difference type of fractures density impacted to the difficulties during mining operation. The big size boulder with low fractures or even un-fractured on lower saprolite or upper bedrock can cause the lower mining recovery due to the limitation of existing big mining fleet operation.

Implication toward saprolite characteristics

Implication of different fracture characteristics has been evaluated to identify the impact to the lateritic horizons distribution and also chemical composition profile. Based on the frequency distribution, variable of limonite thickness indicated the absence correlation as the impact of different fracture characteristics (Fig 10).
On the contrary, saprolite thickness population shows difference pattern where the mode as the most frequently occurring thicknesses value on location A is thicker than location B (Fig 11). This represented mode value for both locations is confirming that the area with more high fractured on the bedrocks indicated the deeper penetration of chemical attack which resulted the thicker of saprolite zone than the opposite. The statistic summary for each laterite horizon thickness depicted on Table 3 also represent the similar trend for the mean value of thickness both limonite and saprolite zone for each difference fracture type.

Chemical composition of Fe-Si-Mg in saprolite zone for both two types of fracture is depicted on Figure 11. Based on the ternary diagram, location A has higher silica content than location B. By the originality of silica accumulation, the availability of free space within the rocks along fracture opening or natural joints will be occupied by silica and it is confirming that the location A with the dominant characteristic of high to medium fractured within the bedrocks has higher content of silica than location B.

In the laterite profile, silica is associated as a box-work, sheet formed and lenses that are emplaced within limonite and saprolite zones while in another way as massive silica. The box-work or sheeted silica are generally oriented sub-horizontally at the time of formation and indicates the precipitation of silica at water table level (Ahmad, 2009).
Vertical variation of chemical composition

The characteristic of depth profile composition between two locations are shown on Figure 14 represented the area of high-medium fractured bedrock and low to un-fractured bedrock. In high to medium fractured (Location A), the depth concentration of Fe-SiO$_2$-MgO shown the normal variation of nickel laterite profile. The typical of high intense of fractures are displayed on lower layer of saprolite zone. The MgO and SiO$_2$ content fluctuated due to the variation of soft grained materials content which has low MgO and high silica and the hard materials which has the opposite content of MgO and SiO$_2$ (un-weathered boulder).

The characteristics profile in low to un-fractured (Location B) shows relatively constant depleted upward for MgO and SiO$_2$ starting from bedrock, lower saprolite, upper saprolite and limonite. This condition is accordance to the actual composition of fracture density within the saprolite zone which is dominated by low to un-fractured rocks.

Ni enrichment zone between two different fractures density area are typically similar on variation. The supergene enrichment for nickel as semi-mobile element is occurred in
the saprolite zone through precipitation while magnesia is released from ferro-
magnesian minerals due to the travelling
down of ground water into the saprolite
zone.
The depth profile also still reflected the
different thickness of saprolite zone in
average that the high to medium fractured
area is thicker than the low to un-fractured
area.

CONCLUSIONS
Ultradeep complex which is composed by
unique peridotite that essentially
unserpentinized on west area of Sorowako
region has different characteristic due to the
variability of fracture density within the
bedrocks. The study identified the specific
implication of fracture density to the
characteristics of saprolitic horizon of nickel
laterite deposit in local basis at mined-out
sites area that consist of different type of
fracture density. The classification of
fractures density on bedrocks using one
dimension of linear fracture frequency and
rock quality designation resulted the
different type of two local area of study that
the location A is reflected high to medium
fractured and location B is low to un-
fractured in bedrocks. By the thickness
frequency distribution, the area with high to
medium fractured has the thickness mode
value thicker than the low to un-fractured
one. This result is confirming that the
fracture density was proven to provide the
available opening space in rocks to facilitate
the chemical attack during the laterisation.
The opening space in rocks along joints and
fractures naturally will be occupied by silica
and it is confirming by the characteristics of
high-medium fractured area that tend to has
higher silica content than the low fractured
area. The typical vertical variation of
chemical composition also reflected the
fracture density composition in rocks
especially in lower layer of saprolite zone.
For mining purpose, the indication of high
silica and low magnesia content (high silica-
magnesia ratio) in saprolitic nickel ores
should be aware during ore excavation in
this area due to the potential silica to dilute
the ores.

ACKNOWLEDGMENT
Gratefully thank to PT Vale Indonesia who is
giving the permission to evaluate the mined-
out data for the research. The extended
thank to Mineral Resource Inventory team
for discussion, assistance and constructive
comments.

REFERENCES
Ahmad, W., 2009. Nickel Laterite:
Fundamentals of chemistry, mineralogy,
weathering process, formation and
exploration, ValeInco-VITSL
(unpublished).
Brand, N.W., Butt, C.R.M., and Elias, M.,
1998, Nickel laterites: classification and
features, AGSO Journal of Australian
Burger, P.A., 1996, Origins and
Characteristics of Lateritic Nickel
Laterite Ore Deposits: Weathered
Serpentinites, Elements 9: 123-128, doi:
10.2113/gselements.9.2.123.
Deere, D.U., and Deere D.W., 1988, The
Rock Quality Designation (RQD) Index in
Practice, Rock Classification Systems for
91-101.
Geleson, S.A., Butt, C.R.M., and Elias, M.,
2003, Nickel laterites: a review, Society
of Economic Geologists Newsletter,
No.54.
in Eastern Indonesia. Journal of Asian
Kadarusman, A, Miyashita, S., Maruyama,
S., Parkinson, C.D., and Ishikawa, A.,
2004, Petrology, geochemistry and
paleogeographic reconstruction of the
East Sulawesi Ophiolite, Indonesia,
Tectonophysics 392, p.55-83,
Monnier, C., Girardeau, J., Maury, R.C.,
Cotten, J., 1995. Back arc basin origin for
the East Sulawesi Ophiolite, Eastern
Mudd, G.M., 2009, Nickel Sulfide Versus
Laterite : The Hard Sustainability
Challenge Remains. Proc. 48th Annual
Conference of Metallurgists", Canadian
Metallurgical Society.
Quesnel, B., de Veslud, C.L.C., Boulvais, P.,
gautier, P., Cathelineau, M., and
Drouillet, M., 2017, 3D modeling of the
laterites on top of the Koniambo Massif,
New Caledonia: refinement of the per
descensum lateritic model for nickel
Seguret, S.A., and Moreno, C.G., 2015,
Geostatistical Evaluation of Rock-Quality
Designation and its link with Linear
Fracture Frequency, The 17th Annual
Conf. of the International Association of
Math. Geosc, Germany.
Silver, E.A., McCaffrey, R., and Smith, R.B.,
1983, Collision, Rotation, and the
Initiation of Subduction in the Evolution