Review: Komposit Polimer Pektin dalam Sistem Penghantaran Obat

Devi Puspita Sari, Pramulani Mulya Lestari, Nining Nining

Sari

Pektin merupakan polisakarida yang berlimpah di alam dan memiliki kegunaan yang menjanjikan dalam bidang farmasi. Pektin tahan terhadap enzim pencernaan namun gel pektin dapat membengkak dalam media berair dan sejumlah kecil senyawa dapat dilepaskan ke saluran gastrointestinal. Masalah ini dapat diatasi dengan mengembangkan komposit pektin yang diperoleh dari penggabungan polimer pektin dengan polimer lain. Artikel ini membahas tentang interaksi pektin dengan polimer lain dalam berbagai sistem penghantaran obat. Metode yang digunakan dalam artikel review adalah dengan meninjau jurnal ilmiah yang diterbitkan secara nasional dan internasional yang diperoleh dari Google, Google Scholar, Pubmed dan Science Direct. Dari beberapa penelitian terkait, sistem penghantaran yang telah dikembangkan dan dilaporkan berupa film, hidrogel, sistem partikulat dan tablet. Polimer lain seperti alginat, protein, kitosan, gelatin dan pati diketahui dapat memperbaiki sifat pektin sehingga komposit pektin dapat digunakan sebagai penghantaran obat terkontrol. Dengan demikian, pengembangan sistem penghantaran obat lainnya dengan komposit pektin menjadi peluang dan tantangan di masa yang akan datang.

Kata Kunci

Pektin; Komposit Pektin; Sistem Penghantaran Obat

Teks Lengkap:

PDF

Referensi

Mudgil D. The Interaction Between Insoluble and Soluble Fiber. Dietary Fiber for the Prevention of Cardiovascular Disease: Fiber’s Interaction between Gut Micoflora, Sugar Metabolism, Weight Control and Cardiovascular Health. Elsevier Inc.; 2017. 35–59 p

Raj AAS et al. A Review on Pectin: Chemistry due to General Properties of Pectin and its Pharmaceutical Uses. 2012;(01).

Martau GA, Mihai M, Vodnar DC. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers (Basel). 2019;11(11).

Bagliotti Meneguin A, Stringhetti Ferreira Cury B, Evangelista RC. Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydr Polym. 2014;99:140–9.

Jain D, Bar-Shalom D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014;40(12):1576–84.

Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011;153(3):206–16.

Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: An update on potential biomedical and pharmaceutical applications. Vol. 13, Marine Drugs. 2015. 5156–5186 p.

Hanna DH, Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem. 2019;84(November 2018):115–24.

Parker NG, Povey MJW. Ultrasonic study of the gelation of gelatin : phase diagram , hysteresis and kinetics.

Yang J, Huang Y, Gao C, Liu M, Zhang X. Colloids and Surfaces B : Biointerfaces Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release. Colloids Surfaces B Biointerfaces. 2014;115:368–76.

Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and pectin-based composite materials: Beyond food texture. Molecules. 2018;23(4).

Palin R, Geitmann A. The role of pectin in plant morphogenesis. BioSystems. 2012;109(3):397–402.

Kaya M, Sousa AG, Crépeau MJ, Sørensen SO, Ralet MC. Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction. Ann Bot. 2014;114(6):1319–26.

Geerkens CH, Nagel A, Just KM, Miller-Rostek P, Kammerer DR, Schweiggert RM, et al. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll. 2015;51:241–51.

Yapo BM, Koffi KL. Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace. Foods. 2014;3(1):1–12.

Twinomuhwezi H, Godswill AC, Kahunde D. Extraction and Characterization of Pectin from Orange (Citrus sinensis), Lemon (Citrus limon) and Tangerine (Citrus tangerina). Am J Phys Sci. 2020;1(1(2)):17–30.

Khamsucharit P, Laohaphatanalert K, Gavinlertvatana P, Sriroth K, Sangseethong K. Characterization of pectin extracted from banana peels of different varieties. Food Sci Biotechnol. 2018;27(3):623–9.

Ma S, Yu SJ, Zheng XL, Wang XX, Bao QD, Guo XM. Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr Polym. 2013;98(1):750–3.

Yang JS, Mu TH, Ma MM. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 2018;244(October 2017):197–205.

Begum R, Aziz MG, Uddin MB, Yusof YA. Characterization of Jackfruit (Artocarpus Heterophyllus) Waste Pectin as Influenced by Various Extraction Conditions. Agric Agric Sci Procedia. 2014;2:244–51.

Grassino AN, Brnčić M, Vikić-Topić D, Roca S, Dent M, Brnčić SR. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016;198:93–100.

Narasimman P, Sethuraman P. an Overview on the Fundamentals of Pectin. Int J Adv Res. 2016;4(12):1855–60.

Giacomazza D, Bulone D, San Biagio PL, Marino R, Lapasin R. The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin. Int J Biol Macromol. 2018;112:1183–90.

Zaid RM, Mishra P, Tabassum S, Wahid ZA, Sakinah AMM. High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: Extraction kinetics and thermodynamic studies. Int J Biol Macromol. 2019;141:1147–57.

Han W, Meng Y, Hu C, Dong G, Qu Y, Deng H, et al. Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food Hydrocoll. 2017;66:37–48.

Wan L, Yang Z, Cai R, Pan S, Liu F, Pan S. Calcium-induced-gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocoll. 2021;112(August 2020):106252.

Alborzi S, Lim LT, Kakuda Y. Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under invitro conditions. LWT - Food Sci Technol. 2014;59(1):383–8.

Kiaei Pour P, Alemzadeh I, Vaziri AS, Beiroti A. Potential effects of alginate–pectin biocomposite on the release of folic acid and their physicochemical characteristics. J Food Sci Technol. 2020;57(9):3363–70.

Galus S, Lenart A. Development and characterization of composite edible films based on sodium alginate and pectin. J Food Eng. 2013;115(4):459–65.

Seixas FL, Turbiani FRB, Salomão PG, Souza RP, Gimenes ML. Biofilms composed of alginate and pectin: Effect of concentration of crosslinker and plasticizer agents. Chem Eng Trans. 2013;32(January):1693–8.

Hsu FY, Yu DS, Huang CC. Development of pH-sensitive pectinate/alginate microspheres for colon drug delivery. J Mater Sci Mater Med. 2013;24(2):317–23.

Belščak-Cvitanovic A, Bušić A, Barišić L, Vrsaljko D, Karlović S, Špoljarić I, et al. Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll. 2016;57:139–52.

Jindal M, Kumar V, Rana V, Tiwary AK. An insight into the properties of Aegle marmelos pectin-chitosan cross-linked films. Int J Biol Macromol. 2013;52(1):77–84.

Kowalonek J. Studies of chitosan/pectin complexes exposed to UV radiation. Int J Biol Macromol. 2017;103:515–24.

Recillas M, Silva LL, Peniche C, Goycoolea FM, Rinaudo M, Román JS, et al. Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydr Polym. 2011;86(3):1336–43.

Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9):1148–71.

Neufeld L, Bianco-Peled H. Pectin–chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol. 2017;101:852–61.

Rampino A, Borgogna M, Bellich B, Blasi P, Virgilio F, Cesàro A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur J Pharm Sci. 2016;84:37–45.

Wu L, Wang H, Zhu XH, Hou YC, Liu WW, Yang GM, et al. Pectin-chitosan complex: Preparation and application in colon-specific capsule. Int J Agric Biol Eng. 2015;8(4):151–60.

Wusigale, Liang L, Luo Y. Casein and pectin: Structures, interactions, and applications. Trends Food Sci Technol. 2020;97(September 2019):391–403.

Rodriguez Patino JM, Pilosof AMR. Protein-polysaccharide interactions at fluid interfaces. Food Hydrocoll. 2011;25(8):1925–37.

Chang C, Wang T, Hu Q, Zhou M, Xue J, Luo Y. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017;70:143–51.

Li X, Fang Y, Al-Assaf S, Phillips GO, Jiang F. Complexation of bovine serum albumin and sugar beet pectin: Stabilising oil-in-water emulsions. J Colloid Interface Sci. 2012;388(1):103–11.

Wang T, Hu Q, Zhou M, Xia Y, Nieh MP, Luo Y. Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur J Pharm Biopharm. 2016;107:273–85.

Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA, De Freitas O. Preparation and characterization of microcapsules based on biodegradable polymers: Pectin/casein complex for controlled drug release systems. AAPS PharmSciTech. 2012;13(2):364–72.

Fahrurroji A, Thendriani D, Riza H. Hesperidin Hydrogel Formulation Using Pectin-Chitosan Polymer Combination. Int J Pharm Pharm Sci. 2017;9(12):98.

Huang S, Tu Z cai, Sha X mei, Wang H, Hu Y ming, Hu Z zi. Gelling properties and interaction analysis of fish gelatin–low-methoxyl pectin system with different concentrations of Ca2+. Lwt. 2020;132(July).

Shewan HM, Stokes JR. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J Food Eng. 2013;119(4):781–92.

Fernández Farrés I, Moakes RJA, Norton IT. Designing biopolymer fluid gels: A microstructural approach. Food Hydrocoll. 2014;42(P3):362–72.

Wu B cheng, McClements DJ. Functional hydrogel microspheres: Parameters affecting electrostatic assembly of biopolymer particles fabricated from gelatin and pectin. Food Res Int. 2015;72:231–40.

Gupta B, Tummalapalli M, Deopura BL, Alam MS. Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels. Carbohydr Polym. 2014;106(1):312–8.

Shalini B, Ruban Kumar A. Preparation and characterisation of gelatin blend pectin encapsulated hydroxyapatite (Ca10(OH)2(PO4)6) nanoparticles using precipitation method. Mater Today Proc. 2019;8:245–9.

Silva DF, Favaro-Trindade CS, Rocha GA, Thomazini M. Microencapsulation of lycopene by gelatin-pectin complex coacervation. J Food Process Preserv. 2012;36(2):185–90.

Tummalapalli M, Berthet M, Verrier B, Deopura BL, Alam MS, Gupta B. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing. Int J Pharm. 2016;505(1–2):234–45.

Gałkowska D, Długosz M, Juszczak L. Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch/Staerke. 2013;65(5–6):499–508.

Ma YS, Pan Y, Xie QT, Li XM, Zhang B, Chen HQ. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem. 2019;274(February 2018):319–23.

Carbinatto FM, De Castro AD, Cury BSF, Magalhães A, Evangelista RC. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int J Pharm. 2012;423(2):281–8.

Carbinatto FM, de Castro AD, Evangelista RC, Cury BSF. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9(1):27–34.

Liu Y. Starch-pectin matrices for encapsulation of ascorbic acid. Food Sci Technol Dep. 2014;1:1–101.

Soares GA, Castro AD De, Cury BSF, Evangelista RC. Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr Polym. 2013;91(1):135–42.

Rezvanian M, Ahmad N, Mohd Amin MCI, Ng SF. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol. 2017;97:131–40.

Nining N, Elfiyani R, Wulandari E. Comparison eugenol and oleic acid as a plasticizer on characteristic of dextromethorphan hydrobromide film by solvent casting method. Pharm Sci Asia. 2021;48(2):139–46.

Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int J Biol Macromol. 2017;97:536–43.

Long J, Etxeberria AE, Nand A V., Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C. 2019;104(June):109873.

Birch NP, Schiffman JD. Characterization of self-Assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir. 2014;30(12):3441–7.

Islan GA, De Verti IP, Marchetti SG, Castro GR. Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility. Appl Biochem Biotechnol. 2012;167(5):1408–20.

Puga AM, Lima AC, Mano JF, Concheiro A, Alvarez-Lorenzo C. Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydr Polym. 2013;98(1):331–40.

Cazorla-Luna R, Notario-Pérez F, Martín-Illana A, Ruiz-Caro R, Tamayo A, Rubio J, et al. Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir. Pharmaceutics. 2019;11(1).

Khurana R, Singh K, Sapra B, Tiwary AK, Rana V. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength. Carbohydr Polym. 2014;102(1):55–65.

Pandey S, Mishra A, Raval P, Patel H, Gupta A, Shah D. Chitosan-pectin polyelectrolyte complex as a carrier for colon targeted drug delivery. J Young Pharm. 2013;5(4):160–6.

Refbacks

  • Saat ini tidak ada refbacks.