Analisis Sensitivitas Model Matematika Penyebaran Penyakit Dengan Vaksinasi

Fourianita Malorung, Megawati Blegur, Rapmaida M. Pangaribuan, Meksianis Z. Ndii

Abstract


Pemodelan matematika telah banyak digunakan untuk menganalisis dinamika penyebaran dan tingkat keefektifan strategi pencegahan penyakit. Penelitian ini fokus pada analisis model epidemi Susceptible-Infected-Recovered (SIR)  dengan vaksinasi random dan model Susceptible-Vaccinated-Infected-Recovered (SVIR) pada saat lahir. Analisis sensitivitas dilakukan untuk mengetahui parameter yang berpengaruh pada jumlah individu terinfeksi dan ambang batas epidemik (basic reproduction number). Hasil penelitian menunjukkan bahwa pada model SIR, laju penularan (  dan laju kesembuhan (  merupakan parameter yang paling berpengaruh terhadap basic reproduction number.  Laju kelahiran dan kematian ( , tingkat keefektifan vaksin (p) dan laju kesembuhan  (  merupakan parameter yang berpengaruh pada titik tetap infected. Untuk model SVIR, laju penularan  dan laju kesembuhan (  merupakan parameter yang berpengaruh pada basic reproductive ratio, sedangkan  laju kelahiran dan kematian (  dan laju kesembuhan  (  merupakan parameter yang berpengaruh pada titik tetap infected. 


Keywords


Vaksin, SIR, SVIR, Analisis Sensitivitas

References


Ndii, M.Z., Mathematical Modelling to Investigate a Wolbachia intervention to reduce dengue transmission, in Department of Mathematics. 2015, University of Newcastle.

Supriatna, A.K., E. Soewono, and S.A. van Gils, A two-age-classes dengue transmission model. Mathematical Biosciences, 2008. 216(1): p. 114-121.

Ndii, M.Z., et al., The effect of Wolbachia on dengue dynamics in the presence of two serotypes of dengue: symmetric and asymmetric epidemiological characteristics. Epidemiology and Infection, 2016. 144(13): p. 2874-2882.

Ndii, M.Z., et al., The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced. Theoretical Population Biology, 2016. 111: p. 9-15.

Dorigatti, I., et al., Modelling the immunological response to a tetravalent dengue vaccine from multiple phase-2 trials in Latin America and South East Asia. Vaccine, 2015. 33(31): p. 3746-3751.

Ferguson, N.M., et al., Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment. Science, 2016. 353(6303): p. 1033-1036.

Ndii, M.Z. and A.K. Supriatna, Stochastic Mathematical Models in Epidemiology. Information, 2017. 20: p. 6185-6196.

Marino, S., et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 2008. 254(1): p. 178-196.

Hurint, R.U., M.Z. Ndii, and M. Lobo, Analisis Sensitivitas Model Epidemi SEIR. Natural Science: Journal of Science and Technology, 2017. 6(1): p. 22-28.

Malorung, F., Analisis Dinamika Transmisi Virus Rubella Dengan Vaksinasi, in Jurusan Matematika, Universitas Nusa Cendana. 2017, Jurusan Matematika, Universitas Nusa Cendana.

Keeling, M.J. and P. Rohani, Modeling Infectious Diseases in Humans and Animals. 2007: Princeton University Press.

de Vries, G., et al., A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods. 2006: Society for Industrial and Applied Mathematics.

Diekmann, O., J.A.P. Heesterbeek, and M.G. Roberts, The construction of next-generation matrices for compartmental epidemic models. Journal of The Royal Society Interface, 2009.

Chitnis, N., J.M. Hyman, and J.M. Cushing, Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model. Bulletin of Mathematical Biology, 2008. 70(5): p. 1272.




DOI: https://doi.org/10.24198/jmi.v14.n1.16000.9-15

Article metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.


Jurnal Matematika Integratif ( p-ISSN:1412-6184 | e-ISSN:2549-9033) published by Department of Matematics, FMIPA, Universitas Padjadjaran.

Indexed by:

Google ScholarLogo Crossref The Indonesian Publication Index-Portal Garuda

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

p-ISSN:1412-6184 | e-ISSN:2549-9033