A comparison of synthetic fungicide and Trichoderma spp. applications against clubroot disease on cabbage

Ra Siska Tarigan, Rina Christina Hutabarat, Bina br Karo, Perdinanta Sembiring, Delima Napitupulu, Supardi Supardi, Rudi Cahyo Wicaksono, Jamaluddin Jamaluddin, Wiwin Setiawati, Ahsol Hasyim

Abstract


Clubroot is one of the important diseases affecting members of the Cruciferae family.  This disease is caused by soil-borne pathogen, called Plasmodiophora brassicae. The pathogen produces motile spores called zoospores. This pathogen results in a drop of cruciferous plant productivity. The objectives of this research were to identify specific Trichoderma species in three districts in Sumatra Utara and to evaluate the potency of T. harzianum (both local species from Berastagi and species developed by Indonesian Vegetable Research Institute (IVEGRI)) to control the disease and then comparing them with the application of synthetic fungicide. The research was conducted in a greenhouse of Research Installation and Application of Agricultural Technology (IP2TP), Berastagi, North Sumatera from April‒September 2018, using Completely Randomized Design (CRD) with eight treatments: C1 (control-without Trichoderma), C2 (T. harzianum IVEGRI obtained from corn substrate 2 g/polybag), C3 (T. harzianum IVEGRI obtained from rice substrate 2 g/polybag), C4 (T. harzianum IVEGRI obtained from corn substrate 4 g/polybag, C5 (T. harzianum IVEGRI obtained from rice substrate 4 g/polybag), C6 (local T. harzianum obtained from corn substrate 2 g/polybag), C7 (local T. harzianum obtained from corn substrate 4 g/polybag) and C8 (synthetic fungicide Nebijin). Each treatment contained 10 polybags of plants. These treatments were replicated four times. The results exhibited there were 3 Trichoderma species found in Berastagi: T. harzianum, T. viride and T. koningii. Also, 4 g of local T. harzianum (corn substrate) has better performance (0% disease incidence and 0% disease severity) compared to other treatments.

Keywords


Antagonist; Biological control; Disease severity; Pathogen

Full Text:

PDF

References


Agnihotri PK, Kumar Y, Singh SN. 2023. Biocontrol Ability of Trichoderma Isolates on Anthracnose Disease (Colletotrichum capsici) of Chilli (Capsicum annuum L.). The Pharma Innovation Journal, 12(2): 13 – 17. https://doi.org/10.22271/tpi.2023.v12.i2a.18533.

Amaria W, Taufiq E, Harni R. 2013. Selection and identification of antagonistic fungi as biological agents of the white root fungus Rigidoporus microporus on rubber plants. Jurnal Tanaman Industri dan Penyegar, 4(1): 55‒64. https://dx.doi.org/10.21082/jtidp.v4n1.2013.p55-64

Anjum N, Shahid AA, Iftikhar S, Mubeen M, Ahmad MH, Jamil Y, Rehan MK, Aziz A, Iqbal S, Abbas A. 2020. Evaluation of Trichoderma isolates for biological control of Fusarium wilt of chili. Plant Cell Biotechnology and Molecular Biology, 21(59-60): 42-57.

Antastia W, Safni I, Siregar AZ. 2019. Test the effectiveness of several types of Plant Growth Promoting Rhizobacteria (PGPR) to control damping off disease (Athelia rolfsii (Curzi)) in soybean plants (Glycine max (L.) Merrill). Jurnal Online Agroekoteknologi, 7(2): 273‒281.

Brizuela AM, Galvez L, Arroyo JM, Sanchez S, Palmero D. 2023. Evaluation of Trichoderma spp. on Fusarium oxysporum f.sp. asparagi and Fusarium Wilt in Asparagus Crop. Plants, 12(15): 2846. https://doi.org/10.3390/plants12152846.

Chamzurni T, Oktarina H, Hanum K. 2013. Effectiveness of Trichoderma harzianum and Trichoderma virens to control Rhizoctonia solani Kühn on chili (Capsicum annum L.) seedlings. Jurnal Agrista, 17(1): 12‒17.

Darmiati NN, Sudarma IM. 2017. Diversity of suppressive soil microflora in controlling clubroot disease in cabbage (Brassica Oleracea L). Ecotrophic, 11(1): p. 70-75

Deora A, Gossen BD, McDonald MR. 2013. Cytology of infection, development and expression of resistance to Plasmodiophora brassicae in canola. Annals of Applied Biology, 163(1): 56‒71. https://doi.org/10.1111/aab.12033

Dwiastuti ME, Fajri MN, Yunimar Y. 2016. Potential Trichoderma spp. as a control agent for Fusarium spp. causes of wilt disease in strawberry plants. Jurnal Hortikultura, 25(4): 331‒339. https://dx.doi.org/10.21082/jhort.v25n4.2015.p331-339

Frascella A, Sarrocco S, Mello A, Venice F, Sal-vatici C, Danti R, Emiliani G, Barberini S, Rocca GD. 2022. Biocontrol of Phytopthora cambivora on Castanea sativa: Selection of local Trichoderma spp. isolates for the management of ink disease. Forests, 13(7): 1065. https://doi.org/10.3390/f13071065.

Gahatraj S, Shrestha SM, Devkota TR, Rai HH. 2019. A review on clubroot of Crucifers: symptoms, life-cycle of pathogen, factors affecting severity, and management strategies. Archives of Agriculture and Environ-mental Science, 4(3): 342‒349. https://doi.org/10.26832/24566632.2019.0403012

Gossen BD, Mcdonald MR, Hwang SF, Strelkov SE, Peng G. 2013. A comparison of clubroot development and management on canola and brassica vegetables. Canadian Journal of Plant Pathology, 35(2): 175‒191. https://doi.org/10.1080/07060661.2013.763293

Guo Y, Fan Z, Yi X, Zhang Y, Khan RAA, Zhou Z. 2021. Sustainable management of soil-borne bacterium Ralstonia solanacearum in vitro and in vivo through fungal metabolites of different Trichoderma spp. Sustainability, 13 (3): 1491. https://doi.org/10.3390/su13031491.

Gupta V, Sharma AK. 2013. Assessment of opti-mum temperature of Trichoderma harzianum by monitoring radial growth and population dynamics in different compost manures un-der different temperature. Octa Journal of Bi-osciences, 1(2).

Gusnawaty HS, Taufik MH. 2014. The effective-ness of Trichoderma indigenous Southeast Sulawesi as a biofungicide against Colleto-trichum sp. in vitro. J Agroteknos, 4: 38‒43.

Ha TN. 2010. Using Trichoderma species for biological control of plant pathogens in Vietnam. Journal of ISSAAS (International Society for Southeast Asian Agricultural Sci-ences), 16(1): 17‒21.

Hasan ZAE, Zainuddin NAIM, Aris A, Ibrahim MH, Yusof MT. 2020. Biocontrol efficacy of Trichoderma asperellum-enriched coconut fibre against Fusarium wilts of cherry tomato. Journal of Applied Microbiology, 129 (4): 991-1003. doi: 10.1111/jam.14674.

Hasyim A, Setiawati W, Lukman L. 2015. Innovation in environmentally friendly pest control technology in chilies: Alternative efforts towards a harmonious ecosystem. Pengembangan Inovasi Pertanian, 8(1): 1‒10. https://dx.doi.org/10.21082/pip.v8n1.2015.1-10

Hwang SF, Cao T, Xiao Q, Ahmed HU, Manolii VP, Turnbull GD, Gossen BD, Peng G, Strelkov SE. 2012. Effects of fungicide, seeding date and seedling age on clubroot severity, seedling emergence and yield of canola. Canadian Journal of Plant Science, 92(6): 1175‒1186. https://doi.org/10.4141/cjps2011-149

Ibrahim DSS, Elderiny MM, Ansari RA, Rizvi R, Sumbul A, Mahmood I. 2020. Role of Trichoderma spp. in the management of plant-parasitic nematodes infesting important crops. Management of Phytonematodes: 259-278. https://doi.org/10.1007/978-981-15-4087-5_11.

Javeed MT, Farooq T, Al-Hazmi AS, Hussain MD, Rehman AU. 2021. Role of Trichoderma as biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. Journal of Invertebrate Pathology, 183: 107626. https://doi.org/10.1016/j.jip.2021.107626.

Kassam R, Kranti KVVS, Yadav J, Chatterjee M, Chawla G, Kundu A, Alkesh H, Thokala PD, Shukla L, Mishra J, Rana VS, Mukhopadhyay R, Phani V, Rao M. 2023. Exploration of rhizosphere-dwelling nematophagous Trichoderma spp. using novel “Bait Technique” with root-knot nematode Meloidogyne incognita. Biological Control, 186. https://doi. org/10.1016/j.biocontrol.2023.105327.

Kuginuki Y, Yoshikawa H, Hirai M. 1999. Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistance cultivars on chinese cabbage (Brassica rapa L. ssp. pekinensis). European Journal of Plant Pathology, 105(4): 327-332. https://doi.org/10.1023/A:1008705413127.

Kusmawanto A, Himawan A, Kristalisasi EN. 2022. Antagonist test of Trichoderma harzi-anum against Ganoderma Boninense causes of oil palm basal stem rot disease. Journal of Agriculture, 1 (3): 90-97. https://doi.org/10.47709/joa.v1i03.1938.

Le KD, Kim J, Yu NH, Kim B, Lee CW, Kim JC. 2020. Biological control of tomato bacterial wilt, kimchi cabbage soft rot, and red pepper bacterial leaf spot using Paenibacillus elgii JCK-5075. Front. Plant Sci., 11: 775. https://doi.org/10.3389/fpls.2020.00775.

Mishra PK, Khan FN. 2015. Effect of different growth media and physical factors on bio-mass production of Trichoderma viride. People’s Journal of Scientific Research, 8(2): 11-16.

Modrzewska M, Byrla M, Kanabus J, Pierzgalski A. 2022. Trichoderma as a biostimulant and biocontrol agent against Fusarium in the prodution of cereal crops: Opportunities and possibilities. Plant Pathology, 71(7): 1471-1485. https://doi.org/10.1111/ppa.13578.

Nafady NA, Sultan R, El-Zawahry AM, Mostafa YS, Alamri S, Mostafa RG, Hashem M, Has-san EA. 2022. Effective and promising strategy in management of tomato root-knot nematodes by Trichoderma harzianum and arbuscular mycorrhizae. Agronomy, 12(2): 315. https://doi.org/10.3390/agronomy12020315.

Nichols NN, Quarterman JC, Frazer SE. 2018. Use of fluorescent protein to monitor fungal growth in biomass hydrolsate. Biology Methods and Protocols, 3(1): 1-6. https://doi.org/10.1093/biomethods/bpx012.

Päsold S, Ludwig‐Müller J. 2013. Reduction of clubroot (Plasmodiophora brassicae) formation in Arabidopsis thaliana after treatment with prohexadione‐calcium, an inhibitor of oxoglutaric acid‐dependent dioxygenases. Plant Pathology, 62(6): 1357‒1365. https://doi.org/10.1111/ppa.12049

Qulsum MU, Islam MM, Chowdhury MEK, Hossain SMM, Hasan MM. 2023. Manage-ment of bacterial wilt (Ralstonia solanacearum) of brinjal using Bacillus cereus, Trichoderma harzianum and Calotropis gigantea consortia in Bangladesh. Egyptian Journal of Biological Pest Control, 33 (1): 74. https://doi.org/10.1186/s41938-023-00720-0.

Rennie DC, Manolii VP, Cao T, Hwang SF, Howard RJ, Strelkov SE. 2011. Direct evidence of surface infestation of seeds and tubers by Plasmodiophora brassicae and quantification of spore loads. Plant Pathology, 60(5): 811‒819. https://doi.org/10.1111/j.1365-3059.2011.02449.x

Sanna M, Pugliese M, Gullino ML, Mezzalama M. 2022. First report of Trichoderma afroharzianum causing seed rot on maize in Italy. Plant Disease, 106 (7): 1982. https://doi.org/10.1094/PDIS-12-21-2697-PDN.

Soenartiningsih S, Djaenuddin N, Saenong MS. 2014. Effectiveness of Trichoderma sp. and Gliocladium sp. as a biological biocontrol agent for leaf sheath rot disease in corn. Jurnal Penelitian Pertanian Tanaman Pangan, 33(2): 129‒135. https://dx.doi.org/10.21082/jpptp.v33n2.2014.p129-135

Statistics Indonesia. 2017. Statistical Yearbook of Indonesia 2017.

Sulaiman MM, Yass STA, Aish AA, Basheer L, Yasir SJA, Youssef SA. 2020. Activity of Trichoderma spp. against Erwinia carotovora causal agent of potato tuber soft rot. Plant Archives, 20: 115-118.

Sun G, Yao T, Feng C, Chen L, Li J, Wang L. 2017. Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104: 35‒43. http://dx.doi.org/10.1016/j.biocontrol.2016.10.008

Syahputra MH, Anhar A, Irdawati I. 2017. Isolation Trichoderma spp. from some rizosphere rice plants Solok. Berkala Ilmiah Bidang Bi-ologi, 1(2): 97‒105.

Timila RD, Manandhar S. 2020. Biocontrol effica-cy of Trichoderma spp. against Phythopthora blight of pepper. Nepalese Horticulture, 14 (1): 15-20. https://doi.org/10.3126/nh.v14i.30600.

Wahyuno D, Manohara D, Mulya K. 2009. The role of organic materials in the growth and antagonism of Trichoderma harzianum and Its Effect on Phytophthora capsici in pepper plants. Jurnal Fitopatologi Indonesia, 7: 76−82.

Watanabe T. 2018. Pictorial Atlas of Soil-borne Fungal Plant Pathogens and Diseases. Florida, United States: CRC Press. https://doi.org/10.1201/b22340

Yadav V, Kumar M, Sengar RS, Kumar P, Yadav MK, Bagul VD. 2022. Isolation, molecular and in-silico characterization of Trichoderma spp. from rhizospheric soil sample. Biological Fo-rum, 14(4): 648-652.

Yan Y, Mao Q, Wang Y, Zhao J, Fu Y, Yang Z, Peng X, Zhang M, Bai B, Liu A, Chen S, Ahammed GJ. 2021. Trichoderma harzianum induces resistance to root-knot nematodes by increasing secondary-metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum. Biological Control, 158: 104609. https://doi.org/10.1016/j.biocontrol.2021.104609.

Yudiarti T. 2007. Ilmu Penyakit Tanaman. Yogyakarta, Indonesia: Graha Ilmu.

Yulia E, Istifadah N, Widiantini F, Utami HS. 2017. Antagonism of Trichoderma spp. against the fungus Rigidoporus lignosus (Klotzsch) Imazeki and suppression of white root fungus disease in rubber plants. Agrikultura, 28(1): 47‒55. https://doi.org/10.24198/agrikultura.v28i1.13226




DOI: https://doi.org/10.24198/kultivasi.v23i1.50706

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat