The effect of difference in saliva pH against Hg release from amalgam restoration on in vitro research

Oksana Megasari

Department of Oral Biology Faculty of Dentistry Universitas Padjadjaran

ABSTRACT

Hg release from amalgam restoration is continuous as long as amalgam in the mouth. Difference in saliva pH is one factor that influence Hg releasing from amalgam restoration. The purpose of this research was to find data the effect of difference in saliva pH against Hg release from amalgam restoration. This research was a true experimental in vitro research. This research used 40 samples of premolar teeth of the maxilla, prepared in occlusal Class I, restored with amalgam, and then divided into 4 Groups. Teeth belonging to Group 1 were immersed in saliva artificial with a pH content 5, Group 2 with a pH content of 6, Group 3 with a pH content of 7 as a control, and Group 4 with a pH content of 8. All tooth Groups were immersed for one week after condensation. Research data results analyzed using the One-Way Analysis of Variance (ANOVA). Research results measured using the Atomic Absorption Spectrophotometry (AAS) indicated that Group 1 with a pH content of 5 had the highest average release, namely, 19,276 ppb, followed by Group 4 with a pH content of 8, with a Hg release of 17,691 ppb, followed by Group 3 with a pH content of 7 as a control, with a Hg release of 13,702 ppb, and Group 2 with a pH content of 6 the lowest Hg release, namely 12,377 ppb. Summary of this research showed that there was no effect of saliva pH difference against Hg release from amalgam restoration.

Key words: Hg release, saliva pH, amalgam restorations.

INTRODUCTION

In dentistry, amalgam is well known as one of dental restoration materials. Dental amalgam is made of alloy metal powder mixture, such as silver (Ag), and tin (Sn), and copper (Cu) and sometimes zinc (Zn) with liquid mercury (Hg). Hg is a toxic substance for human body. Amalgam utilization as restoration material is often argued due to the hazardous Hg content for the patient or operator. Hg digestion in Minamata case has shown that Hg is the causal factor for several diseases, such as paralysis, deaf, tremor, and central nervous system disorder when the local inhabitants consumed Hg-contaminated tuna. That particular case has led to anxiousness and fear among dentists and patients.

Hg release from amalgam restoration happens continuously during the time the amalgam is still in the mouth. One of the affecting factors is oral acid environment mechanism. Hg release from the amalgam restoration could happen during amalgam placement into cavity (condensation), polishing, restoration removal, chewing, brushing, and corrosion. The corrosion may be caused by the presence of various different amal-
The study was performed in Pusat Teknologi Nuklir Bahan dan Radiometri (PTNBR) Laboratory Bandung located at Jalan Tamansari No. 71 in the period of April-June 2007.

This study procedure includes the following steps: (1) Preparation of 40 maxillary premolars which were then divided into 4 Groups, i.e. 1, 2, 3, and 4; (2) Each tooth was invested in dental stone, outlines were then made with a mesiodistal width of 3 mm, isthmus width of one third bucal-palatinal distance, and 3 mm cavities were made using inverted cone drill no.3; (3) Perform class I occlusal amalgam preparation by opening the cavity using round drill, then extending it. Undercut is made using inverted cone drill, then the cavity was smoothed using fissure drill, until the tooth was cleaned from dentin debris; (4) Prepare the restoration material, which was SDI high copper amalgam; (5) Amalgam was triturated using amalgamator for 8 seconds and then placed in the cavity using amalgam gun and was manually condensed by 4 kg of condensation pressure, based on the measurement using body scale; (6) Restoration was completed by carving process according to the dental anatomy; (7) Restored premolar was removed from the block and cleaned; (8) Each Group was bathed in 25 ml volume of artificial saliva with different pH levels: Group 1 with pH level of 5; Group 2 with pH level of 6; Group 3 with PH level of 7 as control; Group 4 with pH level of 8; After 24 hours bathed, each tooth was removed from the artificial saliva and polished using polishing materials; Polished teeth from 1, 2, 3, and 4 Groups were re-bathed in the artificial saliva according to the specified pH level.; After one week bathed, the teeth were removed from the artificial saliva and the bath were centrifuged for 20 minutes to obtain homogenous solution, so the measurement could be easily performed; Then the Hg level measurement was performed on the artificial saliva using Absorption Spectrophotometry (AAS).

Data obtained from the result were then analyzed for the mean value and then assessed statistically using One-Way Variance Analysis (ANOVA)
prepared by class I amalgam occlusal preparation. After preparation, Group 1 was bathed in pH 5 artificial saliva bath, Group 2 in pH 6 bath, Group 3 in pH 7 bath, and Group 4 in pH 8 bath. The bath was performed for one week after condensation. The measurement result of Hg level release from class 1 occlusal amalgam restoration in artificial saliva bath measured using Atomic Absorption Spectrophotometry (AAS) produces mean values as presented in the table.

To understand the effect of saliva pH differences on Hg release from in vitro amalgam restoration, One-Way Variance Analysis (ANOVA) was performed.

Table 2 above shows that F_{table} of 2.866 is bigger than F_{calc} of 1.290. According to this result, it can be concluded that the assessment accepts null hypothesis (Ho), which means that there is no effect of saliva pH difference on Hg release from in vitro amalgam restoration.

DISCUSSION

Table 1 shows that Group 1 with pH 5 has the highest Hg release mean value, which is 19.276 ppb. This due to the fact that thin acid film layer (SnO) will be dissolved in the acidic environment, resulting in Hg release. Group 4 with pH 8 has Hg release mean value of 17.681 ppb. Group 3 with pH 7 as the control Group has a mean value of 13.701, and Group 2 with pH 6 has the lowest value of 12.037 ppb.

Table 2 shows that there is no effect of saliva pH difference on Hg release from amalgam restoration due to the fact that F_{table} value of 2.866 is higher than F_{calc} value of 1.290, so it can be concluded that the assessment accepts null hypothesis (Ho).

This is in accordance with the study performed by Marek about Hg release from amalgam dental in artificial saliva with pH 1-8 where he stated that Hg release in γ1 (Ag-Hg) phase is high in artificial saliva with pH 1 and 2. While in pH 3-8, there is no significant difference. Hg release in pH 1 and 2 has a high value due to the fact that the protective thin layer in restoration surface becomes thin and silver (Ag) is also dissolved in acidic environment resulting in Hg ion release and Hg level increase in the restoration surface. While in pH 3-8, it only causes Ag ions to dissolve without stimulating Hg ion to dissolve. In a study performed by Takaku9, Hg level in HCL 0.5% media is shown as ranging in 75 ± 0.0035 ppb, and in lemonade hydrochloride media it ranges in 71 ± 0.0157. It shows that in the acidic media, Hg release level does not show any significant difference.

Several factors that may affect Hg release from amalgam restoration include amalgam placement timing into cavity (condensation), polishing, and restoration removal.

CONCLUSION

Based on this study, it can be concluded that there is no effect of saliva pH difference on Hg release from amalgam restoration. It is suggested that dentists should observe the oral condition of patients who are going to be receive amalgam restoration by counting total number of amalgam restorations in the patient mouth. Amalgam restoration should not be used in patients with bulimia,
peptic ulcer, xerostomia and others diseases that decrease saliva pH.

REFERENCES