Pengaruh Water Stress Treatment pada Pertumbuhan dan Produktivitas Tanaman Tomat (Solanum lycoperscium.L) di Wilayah Tropis

Drupadi Ciptaningtyas, Dian Kurniati, Nizar Ulfah, Rizqi Aditia, Nurpilihan Bafdal

Abstrak


Banyak penelitian mengungkapkan bahwa aplikasi water stress treatment di wilayah subtropis dapat digunakan untuk memproduksi tomat berkualitas tinggi, meskipun fenomena tersebut selalu diikuti dengan melambatnya pertumbuhan dan menurunnya produktivitas tanaman tomat. Penelitian terdahulu mengenai water stress treatment selalu dilakukan di wilayah subtropis di dalam greenhouse berteknologi tinggi, oleh sebab itu, perlu dilakukan penelitian mengenai hal yang sama di wilayah tropis di dalam greenhouse tradisional. Penelitian ini dimulai dengan melakukan penanaman buah tomat pada dua kondisi yaitu stress dengan kelembaban media tanam sekitar 60% (P2) dan 40% (P3) serta kondisi kontrol sekitar 80% (P1). Pertumbuhan tanaman diukur berdasarkan diameter batang dan stem elongation rate, sedangkan produktivitas diukur berdasarkan yield, jumlah buah, dan massa buah rata-rata. Hasil penelitian menunjukkan aplikasi water stress treatment pada tanaman tomat di wilayah tropis di dalam greenhouse tradisional memiliki hasil yang tidak terlalu berbeda dengan penelitian di wilayah subtropis di dalam greenhouse berteknologi tinggi. Tanaman P1 memiliki pertumbuhan dan produktivitas paling tinggi, sedangkan tanaman P2 dan P3 mengalami penurunan pertumbuhan dan produktivitas, masing masing sebesar 36.25% dan 23.48% pada P2 dan 39.78% dan 48.18% pada P3.

Kata kunci: water stress, tomat, pertumbuhan, produktivitas


Teks Lengkap:

PDF

Referensi


Bafdal N. 2016. Rainfall Harvesting as Resources of Self Watering Fertigation System with Various Growing Medias. International Journal on Advanced Science, Engineering and Information Technology. Vol 6 (2016) no 5 hal 787-792.

Ciptaningtyas D. 2014. Development of Water Stress Treatment System for long-term High Brix Tomato Production in Hydroponic Culture. Master Thesis; Institut Pertanian Bogor, Bogor.

Favati F, Lovelli S, Galgano F, Miccolis V, Tommaso TD, Candido V. 2009. Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae. 122: 562-571

Fereres E, Evans RG. 2006. Irrigation of fruit trees and vines. Irrigation Science. 24: 55-57.

Gallardo M, Thompson RB, Valdez LC, Fernandez MD. 2006. Use of stem diameter variations to detect plant water stress in tomato. Irrigation Science. 24:241-255.

Mitchell JP, Shennan C, Grattan SR. 1991. Developmental changes in tomato fruits composition in response to water deficit and salinity. Physiologia Plantarum. 83: 177- 185.

Nurruddin MMd, Chandra A, Madramootoo, Dodds GT. 2003. Effect of water stress at different growth stage on greenhouse tomato yield and quality. HortScience. 38: 1389-1393.

Patane C, Cosentino SL. 2010. Effect of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management. 97: 131-138.

Patane C, Tringali S, Sortino O. 2011. Effect of deficit irrigation on biomass, yield, water productivity and fruits quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae. 192: 590-596

Pulupol LU, Behboudian, MH, Fisher KJ. 1996. Growth, yield, and postharvest attributes of glasshouse tomatoes produced under deficit irrigation. Hort Science. 31: 926-929

Savic S, Stikic R, Radovic BV, Bogicevic B, Jovanovic ZJ, Sukalovic VHT. 2008. Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Scientia Horticulturae. 177: 15-20.

Takayama K, Nishina H. 2007. Early detection of water stress in tomato plants based on projected plant area. Environ. Control Biol. 45 (4): 241-249.

Bafdal N. 2016. Rainfall Harvesting as Resources of Self Watering Fertigation System with Various Growing Medias. International Journal on Advanced Science, Engineering and Information Technology. Vol 6 (2016) no 5 hal 787-792.

Ciptaningtyas D. 2014. Development of Water Stress Treatment System for long-term High Brix Tomato Production in Hydroponic Culture. Master Thesis; Institut Pertanian Bogor, Bogor.

Favati F, Lovelli S, Galgano F, Miccolis V, Tommaso TD, Candido V. 2009. Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae. 122: 562-571

Fereres E, Evans RG. 2006. Irrigation of fruit trees and vines. Irrigation Science. 24: 55-57.

Gallardo M, Thompson RB, Valdez LC, Fernandez MD. 2006. Use of stem diameter variations to detect plant water stress in tomato. Irrigation Science. 24:241-255.

Mitchell JP, Shennan C, Grattan SR. 1991. Developmental changes in tomato fruits composition in response to water deficit and salinity. Physiologia Plantarum. 83: 177- 185.

Nurruddin MMd, Chandra A, Madramootoo, Dodds GT. 2003. Effect of water stress at different growth stage on greenhouse tomato yield and quality. HortScience. 38: 1389-1393.

Patane C, Cosentino SL. 2010. Effect of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management. 97: 131-138.

Patane C, Tringali S, Sortino O. 2011. Effect of deficit irrigation on biomass, yield, water productivity and fruits quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae. 192: 590-596

Pulupol LU, Behboudian, MH, Fisher KJ. 1996. Growth, yield, and postharvest attributes of glasshouse tomatoes produced under deficit irrigation. Hort Science. 31: 926-929

Savic S, Stikic R, Radovic BV, Bogicevic B, Jovanovic ZJ, Sukalovic VHT. 2008. Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Scientia Horticulturae. 177: 15-20.

Takayama K, Nishina H. 2007. Early detection of water stress in tomato plants based on projected plant area. Environ. Control Biol. 45 (4): 241-249.

Bafdal N. 2016. Rainfall Harvesting as Resources of Self Watering Fertigation System with Various Growing Medias. International Journal on Advanced Science, Engineering and Information Technology. Vol 6 (2016) no 5 hal 787-792.

Ciptaningtyas D. 2014. Development of Water Stress Treatment System for long-term High Brix Tomato Production in Hydroponic Culture. Master Thesis; Institut Pertanian Bogor, Bogor.

Favati F, Lovelli S, Galgano F, Miccolis V, Tommaso TD, Candido V. 2009. Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae. 122: 562-571

Fereres E, Evans RG. 2006. Irrigation of fruit trees and vines. Irrigation Science. 24: 55-57.

Gallardo M, Thompson RB, Valdez LC, Fernandez MD. 2006. Use of stem diameter variations to detect plant water stress in tomato. Irrigation Science. 24:241-255.

Mitchell JP, Shennan C, Grattan SR. 1991. Developmental changes in tomato fruits composition in response to water deficit and salinity. Physiologia Plantarum. 83: 177- 185.

Nurruddin MMd, Chandra A, Madramootoo, Dodds GT. 2003. Effect of water stress at different growth stage on greenhouse tomato yield and quality. HortScience. 38: 1389-1393.

Patane C, Cosentino SL. 2010. Effect of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management. 97: 131-138.

Patane C, Tringali S, Sortino O. 2011. Effect of deficit irrigation on biomass, yield, water productivity and fruits quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae. 192: 590-596

Pulupol LU, Behboudian, MH, Fisher KJ. 1996. Growth, yield, and postharvest attributes of glasshouse tomatoes produced under deficit irrigation. Hort Science. 31: 926-929

Savic S, Stikic R, Radovic BV, Bogicevic B, Jovanovic ZJ, Sukalovic VHT. 2008. Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits. Scientia Horticulturae. 177: 15-20.

Takayama K, Nishina H. 2007. Early detection of water stress in tomato plants based on projected plant area. Environ. Control Biol. 45 (4): 241-249.




DOI: https://doi.org/10.24198/jt.vol11n2.4

Article metrics

Abstract views : 0 | views : 0

Refbacks

  • Saat ini tidak ada refbacks.


Member of :