Perbaikan Sifat Mekanik Deksibuprofen melalui Pembentukan Ko-Kristal Deksibuprofen-Kafein dengan Metode Ultrasound assisted Solution Co- crystallization
Abstrak
Kemampuan suatu bahan aktif farmasi untuk dapat dikempa langsung dipengaruhi oleh sifat-sifat mekaniknya, seperti daya alir dan tabletabilitas. Karakterisasi pembentukan ko-kristal meliputi morfologi kristal, difraktogram sinar-X serbuk, dan perilaku termal. Perbandingan sifat-sifat mekanik dilakukan terhadap ko-kristal DXI-CAF hasil USSC dengan DXI murni, meliputi daya alir (indeks kompresibilitas) dan tabletabilitas (tensile strength dan elastic recovery). Pengujian tabletabiltas dilakukan pada kekuatan kompresi 10-60 kg/cm2. Hasil karakterisasi menunjukkan hasil USSC memiliki habit kristal, difraktogram, dan titik lebur yang unik yang berbeda dengan DXI murni, dan hal ini mengindikasikan terbentuknya ko-kristal DXI-CAF. Indeks kompresibilitas ko-kristal DXI- CAF berada pada rentang kategori baik, sementara DXI murni berada pada rentang kategori buruk. Nilai tensile strength maksimum ko-kristal DXI-CAF adalah 1,526 MPa yang dicapai pada kekuatan kompresi 50 kg/cm2, sementara nilai tensile strength maksimum DXI murni hanya 0,853 MPa yang dicapai pada kekuatan kompresi 20 kg/cm2. Kurva elastic recovery menunjukkan persentase elastic recovery ko-kristal DXI-CAF lebih baik daripada DXI murni. Dari hasil-hasil ini dapat disimpulkan bahwa pembentukan ko-kristal DXI-CAF dengan metode USSC mampu memperbaiki sifat-sifat mekanik deksibuprofen.
Kata Kunci
Teks Lengkap:
PDFReferensi
Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm. 2016;497(1–2):106–13.
Fara DA, Dadou SM, Rashid I, Al-Obeidi R, Antonijevic MD, Chowdhry BZ, et al. A direct compression matrix made from xanthan gum and low molecular weight chitosan designed to improve compressibility in controlled release tablets. Pharmaceutics. 2019 Nov 1;11(11).
Li Z, Zhao LJ, Lin X, Shen L, Feng Y. Direct compaction: An update of materials, trouble-shooting, and application. Int J Pharm. 2017;529(1–2):543–56.
Karimi-jafari M, Padrela L, Walker GM, Croker DM. Creating Cocrystals : A review of Pharmaceutical Cocrystal Preparation Routes and Applications. 2018;18(10):6370–6387.
Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Feasibility Studies and Physicochemical Characterization. Mol Pharm. 2016;13(9):3054–68.
Pan Y, Pang W, Lv J, Wang J, Yang C, Guo W. Solid state characterization of azelnidipine–oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs. J Pharm Biomed Anal. 2017;138:302–15.
Mukaida M, Sato H, Sugano K, Terada K. Stability Orders of Acetaminophen and Theophylline Co-crystals Determined by Co-crystal Former Exchange Reactions and Their Correlation With In Silico and Thermal Parameters. J Pharm Sci. 2017;106(1):258–63.
Karki S, Friščić T, Fabián L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21(38–39):3905–9.
Joshi T V., Singaraju AB, Shah HS, Morris KR, Stevens LL, Haware R V. Structure-mechanics and compressibility profile study of flufenamic acid: Nicotinamide cocrystal. Cryst Growth Des. 2018;18(10):5853–65.
Ratih H, Pamudji JS, Alatas F, Soewandhi SN. Improving Telmisartan Mechanical Properties through the Formation of Telmisartan and Oxalic Acid Co-Crystal by using Slow Evaporation (SE) and Ultrasound Assisted Co- Crystallization from Solution (USSC) Methods. Songklanakarin J Sci Technol. 2020;42(1):189–96.
Sundaramoorthy et al. ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2013 / 0181158 A1. 2013;1(19):12–5.
Syed TA, Gaikar VG, Mukherjee S. Stability of co-crystals of caffeine with gallic acid in presence of coformers. J Food Process Eng. 2019;42(4):1–12.
Hasa D, Marosa M, Bučar DK, Corpinot MK, Amin D, Patel B, et al. Mechanochemical Formation and “disappearance” of Caffeine-Citric-Acid Cocrystal Polymorphs. Cryst Growth Des. 2020;20(2):1119–29.
Pal S, Roopa BN, Abu K, Manjunath SG, Nambiar S. Thermal studies of furosemide-caffeine binary system that forms a cocrystal. J Therm Anal Calorim. 2014;115(3):2261–8.
Apshingekar PP, Aher S, Kelly AL, Brown EC, Paradkar A. Synthesis of Caffeine/Maleic Acid Co-crystal by Ultrasound-assisted Slurry Co-crystallization. J Pharm Sci. 2017;106(1):66–70.
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm. 2011;419(1–2):1–11.
Ahmed H, Shimpi MR, Velaga SP. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev Ind Pharm. 2016;9045(August):1–9.
Kaialy W, Larhrib H, Ticehurst M, Nokhodchi A. Influence of Batch Cooling Crystallization on Mannitol Physical Properties and Drug Dispersion from Dry Powder Inhalers. Cryst Growth Des. 2012;12(6):3006–17.
Kawashima Y, Cui F, Takeuchi H, Niwa T, Hino T, Kiuchi K. Improvements in flowability and compressibility of pharmaceutical crystals for direct tabletting by spherical crystallization with a two-solvent system. Powder Technol. 1994;78(2):151–7.
Zeng G, Wang X, Luo S, Li H, Tu X, Luo X, et al. Effect of Ultrasound on Sodium Arsenate Induction Time and Crystallization Property during Solution Crystallization Processes 1. 2014;60(3):356–60.
Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur J Pharm Sci. 2010;41(5):597–602.
Vuong Q V., Roach PD. Caffeine in green tea: Its removal and isolation. Sep Purif Rev. 2014;43(2):155–74.
Moreno-Calvo E, Calvet T, Cuevas-Diarte MA, Aquilano D. Relationship between the crystal structure and morphology of carboxylic acid polymorphs. Predicted and experimental morphologies. Cryst Growth Des. 2010;10(10):4262–71.
Garbacz P, Paukszta D, Sikorski A, Wesolowski M. Structural characterization of co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide by dsc, x-ray diffraction, ftir and raman spectroscopy. Pharmaceutics. 2020;12(7):1–17.
Desiraju GR. Crystal engineering: From molecule to crystal. J Am Chem Soc. 2013;135(27):9952–67.
Vaghela P, Tank HM, Jalpa P. COCRYSTALS : ANovel approach to improve the physicochemical and mechanical properties. Indo Am J Pharm Res. 2014;4(10).
Beakawi Al-Hashemi HM, Baghabra Al-Amoudi OS. A review on the angle of repose of granular materials. Powder Technol. 2018;330:397–417.
Khairunnisa R, Nisa M, Riski R, Fatmawaty A, Tinggi S, Makassar IF, et al. Evaluasi Sifat Alir Dari Pati Talas Safira (Colocasia esculenta var Antiquorum) Sebagai Eksipien Dalam Formulasi Tablet. J Pharm Med Sci. 2016;1(1):22–6.
Mohan S. Compression Physics of Pharmaceutical Powders: A Review. Int J Pharm Sci Res. 2012;3(06):1580–92.
Serrano DR, O’Connell P, Paluch KJ, Walsh D, Healy AM. Cocrystal habit engineering to improve drug dissolution and alter derived powder properties. J Pharm Pharmacol. 2016;68(5):665–77.
Jain H, Khomane KS, Bansal AK. Implication of microstructure on the mechanical behaviour of an aspirin-paracetamol eutectic mixture. CrystEngComm. 2014;16(36):8471–8.
Persson AS, Alderborn G. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression. Eur J Pharm Biopharm. 2018;125(December 2017):28–37.
Chattoraj S, Shi L, Chen M, Alhalaweh A, Velaga S, Sun CC. Origin of Deteriorated Crystal Plasticity and Compaction Properties of a 1:1 Cocrystal between Piroxicam and Saccharin. Cryst Growth Des. 2014 Aug 6 [2016];14(8):3864–74.
DOI: https://doi.org/10.24198/ijpst.v1i1.34713
Refbacks
- Saat ini tidak ada refbacks.
Switch to English Back to Top |
View My Stats Penerbit Universitas PadjadjaranJurnal ini terindeks di :Creative Commons Attribution :
Based on a work at http://jurnal.unpad.ac.id/ijpst/ |