Analisis Pembentukan Sebaran Bivariat Berbasis Copula Antara Luas Area Terbakar dan Curah Hujan di Sumatra Bagian Selatan

Sri Nurdiati, Mohamad Khoirun Najib, Muhammad Zidane Bayu

Abstract


Kebakaran hutan dan lahan selalu terjadi setiap tahunnya di Indonesia. Luas area terbakar memiliki hubungan tidak langsung dengan curah hujan. Fungsi copula dapat memodelkan hubungan bivariat curah hujan sebagai iklim global dengan kebakaran hutan, khususnya di Sumatera bagian Selatan. Oleh karena itu studi ini menganalisis dan memodelkan sebaran bivariat berbasis copula antara curah hujan dan luas area terbakar. Data dipilah berdasarkan indikator iklim global El Nino-Southern Oscillation (ENSO) dan Indian Ocean Dipole (IOD). Estimasi parameter model dilakukan menggunakan metode Inference of Function for Margins (IFM). Beberapa fungsi copula digunakan untuk membentuk distribusi bersama, seperti Gaussian, student’s t, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, dan BB8. Hasil menunjukkan bahwa sebaran bersama antara curah hujan dan luas area terbakar dipengaruhi oleh indeks ENSO dan IOD. Semakin tinggi indeks ENSO dan IOD, semakin tinggi peluang luas area terbakar pada saat curah hujan rendah dan sebaliknya. Pernyataan tersebut diperkuat dengan peluang bersyarat terjadinya luas area terbakar lebih dari 100 ribu hektar ketika curah hujan dalam kondisi rendah, sangat kecil hampir mendekati nol ketika La Nina dan IOD Negatif. Sementara itu, pada kondisi El Nino Moderat Kuat dan IOD Positif, peluang terjadinya luas area terbakar tersebut bernilai tinggi yaitu 62% dan 91%

Keywords


Copula bivariat; Copula dirotasi; Dependensi; Peluang bersyarat

References


Aflahah, E., Hidayati, R., Hidayat, R. and Alfahmi, F., 2019. Pendugaan hotspot sebagai indikator kebakaran hutan di Kalimantan berdasarkan faktor iklim. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, 9(2), pp.405-418.

Anderson, T.W., 2011. Anderson-Darling Tests of Goodness-of-Fit. International encyclopedia of statistical science, 1, pp.52-54.

Berg, D., 2009. Copula goodness-of-fit testing: an overview and power comparison. The European Journal of Finance, 15(7-8), pp.675-701. https://doi.org/10.1080/13518470802697428

Blom, J. and Wargclou, J., 2016. Does copula beat linearity?: Comparison of copulas and linear correlation in portfolio optimization. Master’s Thesis, Industrial Engineering and Management, Department of Mathematics and Mathematical Statistics, Ume˚a University, Sweden. https://www.diva-portal.org/smash/get/diva2:953735/FULLTEXT01.pdf

Bouy´e, E., Durrleman, V., Nikeghbali, A., Riboulet, G. and Roncalli, T., 2000. Copulas for finance: a reading guide and some applications. Available at SSRN 1032533. https://dx.doi.org/10.2139/ssrn.1032533

Budiningsih, K., 2017. Implementasi kebijakan pengendalian kebakaran hutan dan lahan di Provinsi Sumatera Selatan. Jurnal Analisis Kebijakan Kehutanan, 14(2), pp.165-186. http://dx.doi.org/10.20886/jakk.2017.14.2.165-186

Bureau of Meteorology, 2012. Record-breaking La Nina events. An analysis of the La Nina life cycle and the impacts and significance of the 2010–11 and 2011–12 La Nina events in Australia. Melbourne, Australia: Bureau of Meteorology. http://www.bom.gov.au/climate/enso/history/La-Nina-2010-12.pdf

Cherubini, U., Luciano, E. and Vecchiato, W., 2004. Copula methods in finance. John Wiley & Sons.

de Andrade, F.M., Young, M.P., MacLeod, D., Hirons, L.C., Woolnough, S.J. and Black, E., 2021. Subseasonal precipitation prediction for Africa: Forecast evaluation and sources of predictability. Weather and Forecasting, 36(1), pp.265-284. https://doi.org/10.1175/WAF-D-20-0054.1

Fahimirad, Z. and Shahkarami, N., 2021. The impact of climate change on hydro-meteorological droughts using copula functions. Water Resources Management, 35(12), pp.3969-3993. https://doi.org/10.1007/

s11269-021-02918-z

Ferguson, S.L., Walpole, M. and Fall, M.S., 2020. Achieving statistics self-actualization: Faculty survey on teaching applied social statistics. Statistics Education Research Journal, 19(2), pp.57-75.

Genest, C. and R´emillard, B., 2008. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. In Annales de l’IHP Probabilit´es et statistiques, 44(6), pp.1096-1127. https://doi.

org/10.1214/07-AIHP148

Gringorten, I.I., 1963. A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3), pp.813-814. https://doi.org/10.1029/JZ068I003P00813

Mareta, L., Hidayat, R., Hidayati, R. and Latifah, A.L., 2019. Pengaruh faktor alami dan antropogenik terhadap luas kebakaran hutan dan lahan di Kalimantan. Jurnal Tanah Dan Iklim, 43(2), pp.143-151.

Madadgar, S., Sadegh, M., Chiang, F., Ragno, E. and AghaKouchak, A., 2020. Quantifying increased fire risk in California in response to different levels of warming and drying. Stochastic Environmental Research and Risk Assessment, 34(12), pp.2023-2031. https://doi.org/10.1007/s00477-020-01885-y

Najib, M.K., Nurdiati, S. and Sopaheluwakan, A., 2022. Copula-based joint distribution analysis of the ENSO effect on the drought indicators over Borneo fire-prone areas. Modeling Earth Systems and Environment, 8(2), pp.2817-2826. https://doi.org/10.1007/s40808-021-01267-5

Najib, M.K., Nurdiati, S. and Sopaheluwakan, A., 2022. Multivariate fire risk models using copula regression in Kalimantan, Indonesia. Natural Hazards, pp.1-21. https://doi.org/10.1007/s11069-022-05346-3

Nelsen, R.B., 2006. An introduction to copulas. Springer Science & Business Media.

Nurdiati, S., Najib, M.K., Thalib, A.S., 2022. Joint Distribution and Coincidence Probability of The Number of Dry Days and Total Precipitation in Southern Sumatra Fire-Prone Area. Geographia Technica.

Razali, N.M. and Wah, Y.B., 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), pp.21-33.

Ross, S.R., 2009. Random Variables and Expectation. In Introduction to Probability and Statistics for Engineers and Scientists. Elsevier Academic Press. pp.89-139. https://doi.org/10.1016/B978-0-12-370483-2.00009-6

Saharjo, B.H. and Velicia, W.A., 2018. Peran Curah Hujan Terhadap Penurunan Hotspot Kebakaran Hutan dan Lahan di Empat Provinsi di Indonesia Pada Tahun 2015-2016. Jurnal Silvikultur Tropika, 9(1), pp.24-30. https://doi.org/10.29244/j-siltrop.9.1.24-30

Sklar, M., 1959. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8, pp.229-231.

Yan, J., 2007. Enjoy the joy of copulas: with a package copula. Journal of Statistical Software, 21, pp.1-21. https://doi.org/10.18637/jss.v021.i04




DOI: https://doi.org/10.24198/jmi.v18.n2.42024.217-227

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.