Design and Cloning of Gene Encoding SLPI C-Terminal Domain in Escherichia coli TOP10

Evi Umayah Ulfa, Ni Nyoman Tri Puspaningsih

Abstrak


Elevated levels of neutrophil elastase in CPOD (Chronic Obstructive Pulmonary Disease) airways are regarded as the main trigger of lung destruction and inflammation. SLPI (Secretory leukocyte protease inhibitor), an inhibitor protease, represents an attractive candidate for treatment in chronic lung diseases due to proteases excess. The antiprotease active site of SLPI has been located on the C-terminal domain. This study aimed to design and clone the gene encoding the C-terminal domain of SLPI (SLPIc). The gene encoding SLPIc was optimized and predicted solubility using OptimumGene™ and SoDoPe software. The nucleotide sequence of the optimized SLPIc was synthesized, inserted into the pGEX 4T-2 vector commercially by Genscript, and transformed into the Escherichia coli TOP10. The pGEX 4T-2 vector contains a glutathione S transferase (GST) gene located before the MCS to generate a recombinant protein for fusion with GST. For purification purposes, the His-tag synthesized together with SLPIc. The optimized SLPIc nucleotide sequence gave a CAI value of 0.81, GC content 52.31, and a CFD of 2%. The solubility probability of SLPI fused with GST increased from 0.124 to 0.4656. Confirmation of the transformant using restriction and sequencing analysis showed that the gene encoding of SLPI domain C-terminal optimized in the pGEX 4T-2 plasmid was successfully transformed into E. coli TOP10 as novelty of this study. The optimized SLPIc gene in pGEX 4T-2 has a high probability of being expressed in E. coli based on in-silico analysis.


Kata Kunci


Cloning, codon optimized, SLPI domain C, Escherichia coli TOP10.

Teks Lengkap:

PDF (English)

Referensi


Keputusan Menteri Kesehatan Republik Indonesia Nomor 1022/Menkes/SK/XI/2008 tentang Pedoman Pengendalian Penyakit Paru Obstruktif Kronik.

Perhimpunan Dokter Paru Indonesia (PDPI). PPOK. Diagnosis dan Penatalaksanaan. Jakarta: UI-Press, 2016.

GOLD. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease update 2020 [diunduh pada 10 juli 2021] tersedia dari www.goldcopd.org.

Zani ML, Tanga A, Saidi A, Serrano H, Dallet-Choisy S, Baranger K, Moreau T. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem. Soc. Trans. 2011; 39, 1441–1446 doi:10.1042/BST0391441

Majchrzak-G, Monika, Pawel M, Grygier B, Murzyn K, and Joanna Cichy. Secretory Leukocyte Protease Inhibitor (SLPI), a Multifunctional Protein in the Host Defense Response. Cytokine and Growth Factor Reviews. 2015; 28:79–93. doi: 10.1016/j.cytogfr.2015.12.001

Kim S, Nadel JA. Role of Neutrophils in Mucus Hypersecretion in COPD and Implications for Therapy. Treat Respir Med. 2004; 3 (3): 147-159. doi: 10.2165/00151829-200403030-00003

Barnes PJ. Cellular and Molecular Mechanisms of Chronic Obstructive Pulmonary. Clin Chest Med. 2014; 35: 71–86. doi: 10.1016/j.ccm.2013.10.004

Doumas, S., Kolokotronis, A., Stefanopoulos, P. Anti-inflammatory and Antimicrobial Roles of Secretory Leukocyte Inhibitor. Infection and Immunity. 2005; 73(3) :1271-1274. doi: 10.1128/IAI.73.3.1271-1274.2005

Meckelein B, Nikiforov T, Clemen A, Appelhans H. The location of inhibitory specificities in human mucus proteinase inhibitor (MPI): separate expression of the COOH-terminal domain yields an active inhibitor of three different proteinases. Protein Eng. 1990;3(3):215–220.

Koizumi, M., Fujino, A., Fukushima K, Kamimura, T., Kamimura, M.T. Complex of human neutrophil elastase with 1/2SLPI. Journal of Synchrotron Radiation. 2008; 15: 308–11. doi: 10.1107/S0909049507060670

Munadziroh E, Purnamasari S, Puspaningsih NNT, Soetjipto, Rubianto M, Ismaya WT. Generation of a soluble and active recombinant human secretory leukocyte protease inhibitor. Biotecnología Aplicada. 2017; 3(2): 2231-2234

Lucey EG, Stone PJ, Ciccolella DE, Breuer R, Christensen TG, Thompson RC et al. Recombinant human secretory leukocyte-protease inhibitor: in vitro properties, and amelioration of human neutrophil elastase-induced emphysema and secretory cell metaplasia in the hamster, J. Lab. Clin. Med.1990; 115; 224–232

Harcum SW, Dale BE, Seely RJ, Renaturation of recombinant secretory leukocyte protease inhibitor: aspects of disulfide bond formation kinetics. Biotechnol. Lett. 1993; 15: 943–948

Malhotra, A. Tagging for protein expression, in Guide to Protein Purification, 2nd Edn, eds Burgess RR and Deutscher MP.San Diego, CA: Elsevier. 2009; 463, 239–258. doi: 10.1016/S0076-6879(09)63016-0

Costa S., Almeida A., Castro A., Domingues, L. Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: The novel Fh8 system. Frontiers in Microbiology. 2018; 5(63), 1–20. doi: 10.3389/fmicb.2014.00063

Raran-Kurussi S., Waugh DS. The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One. 2012; 7(11), 1–10. doi: 10.1371/journal.pone.0049589

Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci. 2014;17(3):172-180.

Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004 Jul;22(7):346-53. doi: 10.1016/j.tibtech.2004.04.006. PMID: 15245907.

Zani ML, Tanga A, Saidi A, Serrano H, Dallet-Choisy S, Baranger K, Moreau T. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions, Biochem. Soc. Trans. 2011; 39, 1441–1446; doi:10.1042/BST0391441

Masuda K., Kamimura T., Kanesaki M., Ishii K., Imaizumi A, Sugiyama T, et al. Efficient production of the C-terminal domain of secretory leukoprotease inhibitor as a thrombin-cleavable fusion protein in Escherichia coli. Protein Engineering, Design and Selection”, 1996; 9(1), 101–106. doi:10.1093/protein/9.1.101

Mukai A, Yamaguchi A, Ohtake K, Mihoko T, Hayashi A, Iraha F et al. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli. Nucleic Acids Research. 2015, 43(16) : 8111–8122, https://doi.org/10.1093/nar/gkv787

Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O., Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study, Protein Expression and Purification. 2008; 59(1) : 94- 102

Bhandari, BK, Gardner, P.P, Solubility-Weighted Index: fast and accurate prediction of protein solubility. Bioinformatics. 2020; 36(18):4691-4698. https://doi.org/10.1093/bioinformatics/btaa578

Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys J. 2012;102(8):1907-1915. doi:10.1016/j.bpj.2012.01.060

E.U. Ulfa, E. Munadziroh, H. Hermansyah, N.N.T. Puspaningsih, J. Chem. Technol. Metall. 2020; 55 (6), 1999-2008

C. Mignon, N. Mariano, G. Stadthagen,

A. Lugari, et al., Codon harmonization– going beyond the speed limit for protein expression. FEBS Letters. 2018; 592,1554-1564.




DOI: https://doi.org/10.24198/ijpst.v9i3.36918

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/