Aktivitas antibiofilm ekstrak etanol daun saga (Abrus precatorius) terhadap biofilm bakteri Aggregatibacter actinomycetemcomitans pada pengujian menggunakan MtPB assay: experimental laboratoris
Abstract
Antibiofilm activity of ethanol extract of saga leaf (Abrus precatorius) on Aggregatibacter actinomycetemcomitans Biofilm: experimental laboratoris
Introduction: Aggregatibacter actinomycetemcomitans is a normal flora that forms biofilms in the oral cavity. An excessive increase in the number of these bacteria can cause inflammation of the periodontal tissue called periodontitis. A. actinomycetemcomitans has the main virulence of leukotoxin which can weaken the immune cell response to pathogenic bacteria with a prevalence in aggressive periodontitis reaching 90% so it plays an important role in the rapid increase in the severity of aggressive periodontitis. Saga leaves (Abrus precatorius) have pharmacological activities such as antitumor, antidiabetic, antihelminthic, and antimicrobial with phytochemical content in the form of tannins, saponins, flavonoids, steroids, and alkaloids. The research aims to analyze the antibiofilm activity of ethanol extract of saga leaves against A. actinomycetemcomitans biofilms by looking at the degradation activity and inhibition of biofilm formation. Method: The research was carried out using the MtPB method using crystal violet dye. The extract was tested at various graded concentrations, namely 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, and 50 (mg/mL) which were compared to the negative control 1% DMSO and the positive control amoxicillin +metronidazole 30 µg/mL. Data obtained through the posttest only control group design were then analyzed using one-way ANOVA statistical analysis and linear regression. Results: The results of the degradation and inhibition of biofilm formation tests showed activity in all treatment groups compared to the negative control (p≤0.05). The ethanol extract of saga leaves at a concentration of 25 mg/mL was able to match the degradation ability of the positive control group (p>0.05) and starting from a concentration of 1.56 mg/mL was able to match and exceed the ability to inhibit A. actinomycetemcomitans biofilm formation in the positive control group. The MBEC50 value is found at a concentration of 4.44 mg/mL while the MBIC50 value is at 2.96 mg/mL. Conclusion: ethanol extract of saga leaves has anti-biofilm activity against the bacteria A. actinomycetemcomitans.
Keywords
Full Text:
PDFReferences
European Federation of Periodontolgy. Gum Disease and Periodontitis . 2021. Available from: https://www.efp.org/
Zhang X, Wang X, Wu J, Wang M, Hu B, Qu H, et al. The global burden of periodontal diseases in 204 countries and territories from 1990 to 2019. Oral diseases 2022; 30(2): 754-768. https://doi.org/10.1111/odi.14436
Kemenkes RI. Hasil Utama Riskesdas 2018. Lembaga Penerbit. Jakarta: Balitbangkes. 2018. p. 204
Boehm, Chui. Guide to Periodontal Treatment Solution for General Dentistry. 1st Ed. Thieme. 2020. p. 67-145. https://doi.org/10.1055/b-006-161174
Badanian A, Bueno L, Papone V. Comparative bacterial analysis of chronic and aggressive periodontitis in a sample population from Uruguay. Odontoestomatología 2019;21(33):5–13. https://doi.org/10.22592/ode2019n33a2
Kriswandini IL, Tantiana, Berniyati T, Tyas PNB. Detection of biofilm proteins from Aggregatibacter actinomycetemcomitans induced by glucose, lactose, soy protein, and iron along with protein density analysis. Malaysian J of Medicine and Health Sciences 2020; 16(SUPP4):2636–9346.
Nisak SK, Pambudi DB, Waznah U, Slamet S. Uji antibakteri ekstrak etanol daun saga (Abrus precatorius L.) terhadap bakteri Streptococcus mutans ATCC 31987 dan Staphylococcus aureus ATCC 25923PK/5. Prosiding Seminar Nasional Kesehatan Lembaga Penelitian Dan Pengabdian Masyarakat Universitas Muhammadiyah Pekajangan 2021. p. 2031–2037. https://doi.org/10.48144/prosiding.v1i.967
Mutmainnah B, Ni’matuzahroh. Penurunan aktivitas biofilm strain MRSA 22156 oleh tanaman saga (Abrus precatorius L.). Bioscientist: J Ilm Biol 2023;11(2):1442-1449. https://doi.org/10.33394/bioscientist.v11i2.9297.
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, et al. Virulence and pathogenicity properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019;8(4):222. https://doi.org/10.3390/pathogens8040222.
Bao K, Bostanci N, Thurnheer T, Grossmann J, Wolski WE, Thay B, et al. Aggregatibacter actinomycetemcomitans H-NS promotes biofilm formation and alters protein dynamics of other species within a polymicrobial oral biofilm. Npj Biofilms and Microbiomes 2018;4(1):4. https://doi.org/10.1038/s41522-018-0055-4.
Missoum A. Aggressive periodontitis etiology, pathophysiology, and treatment: a recent review. Int J of Exp Dent Science 2019; 8(1):11-22.https://doi.org/10.5005/jp-journals-10029-1189
Abdelmagyd HA, Shetty DS, Al-Ahmari DM. Herbal medicine as adjunct in periodontal therapies- A review of clinical trials in past decade. J Oral Biology and Craniofacial Research 2019;9(3):212–7. https://doi.org/10.1016/j.jobcr.2019.05.001.
Isola G. Current evidence of natural agents in oral and periodontal health. Nutrients 2020;12(2):585. https://doi.org/10.3390/nu12020585.
Bora N, Jha NA. Tannic acid: an efficient quorum sensing inhibitor. Proceedings of Int. Conf. on Systems and Processes in Physics, Chemistry and Biology 2018. p. 124-126.
Nayak SP, Lone RA, Fakhrah S, Chauhan A, Sarvendra K, Mohanty CS. Future Foods: Global Trends, Opportunities, and Sutainability Challenges. Academic Press. 2022. p. 151-163.https://doi.org/10.1016/B978-0-323-91001-9.00023-2
Ulansari, Putri M. Penggunaan Ekstrak Daun Saga (Abrus precatorius) Sebagai Antibakteri Aeromonas hydrophila Secara In Vitro. Jurusan. Skripsi. Manjemen Sumberdaya Perairan Fakultas Perikanan dan Ilmu Kelautan. Universitas Brawijaya. Malang 2021. p. 31-40. (Tidak Dipublikasikan).
Sunday OJ, Babatunde SK, Ajiboye AE, Adedayo RM, Ajao MA, Ajuwon BI. Evaluation of phytochemical properties and in-vitro antibacterial activity of the aqueous extracts of leaf, seed and root of Abrus precatorius Linn. against Salmonella and Shigella. Asian Pacific J Tropical Biomedicine. 2016;6(9):755-759. https://doi.org/10.1016/j.apjtb.2016.07.002
Pargaputri AF, Munadziroh E, Indrawati R. Antibacterial effects of Pluchea indica less leaf extract on E. faecalis and Fusobacterium nucleatum (in vitro). Maj Kedok Gi. 2017;19(2):264-79.https://doi.org/10.20473/j.djmkg.v49.i2.p93-98
Untung J, Mapiliandari I, Djanis RL, Hindarto C, Amalia A, Rachmy S. Uji aktivitas antifungi ekstrak etanol dan etil asetat daun saga (A. precatorius) terhadap Candida albicans. Warta Akab 2022; 46(2): 1–4.https://doi.org/10.55075/wa.v46i2.149.
Triana H, Pratiwi S, Hamzah H. The inhibition activity of tannin on the formation of mono-species and polymicrobial biofilm Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Maj Obat Tradisional 2019;24(2): 110-118. https://doi.org/10.22146/mot.44532.
Federika AS, Rukmo M, Setyabudi. Antibiofilm activity of flavonoid mangosteen pericarp extract against Porphyromonas gingivalis bacteria. Cons Dent J 2020;10(1):27-30. https://doi.org/10.20473/cdj.v10i1.2020.27-30.
Yakovlieva L, Walvoort MTC. Processivity in bacterial glycosyltransferases. ACS Chemical Biology 2019;15(1):3-16. https://doi.org/10.1021/acschembio.9b00619.
Adnan M, Siddiqui AJ, Ashraf SA, Ashraf MS, Alomrani SO, Alreshidi M, et al. Saponin-derived silver nanoparticles from Phoenix dactylifera (Ajwa dates) exhibit broad-spectrum bioactivities combating bacterial infections. Antibiotics (Basel) 2023;12(9):1415. https://doi.org/10.3390/antibiotics12091415.
Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnology and bioengineering 2021;118(6):2129-2141. https://doi.org/10.1002/bit.27760.
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, et al. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharmac Analys 2023;14(4). https://doi.org/10.1016/j.jpha.2023.11.013.
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes—Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12(1):98. https://doi.org/10.3390/biom12010098.
Bhattacharya SP, Bhattacharya A. Sen A. A comprehensive and comparative study on the action of pentacyclic triterpenoids on Vibrio cholerae biofilms. Microbial Pathogenesis 2020;149:104493. https://doi.org/10.1016/j.micpath.2020.104493.
Yamashita H, Matsuzaki M, Kurokawa Y, Nakane T, Goto M, Lee K, at al. Four new triterpenoids from the bark of Euonymus alatus forma ciliato-dentatus. Phytochemistry Letters 2019;31:140–146. https://doi.org/10.1016/j.phytol.2019.03.015.
Lahiri D, Dash S, Dutta R, Nag M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J Biosciences 2019;44(52).https://doi.org/10.1007/s12038-019-9868-4.
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, et al. Developing natural products as potential anti-biofilm agents. Chinese Medicine 2019;14(11). https://doi.org/10.1186/s13020-019-0232-2.
Clontz, L. Biofilm inhibition: the use of a marine alkaloid derivative in the prevention of clinically-relevant biofilms. J Micro Exp 2018;6(5):206-14. https://doi.org/10.15406/jmen.2018.06.00216.
Anggita D, Nuraisyah S, Wiriansya P. Mekanisme kerja antibiotik. UMI Med J 2022;7(1):46-58. https://doi.org/10.33096/umj.v7i1.149.
Gottschick C, Szafranski SP, Kunze B, Sztajer H, Masur C, Abels C, et al. Screening of compounds against Gardnerella vaginalis biofilms. PLOS ONE 2016;11(4). https://doi.org/10.1371/journal.pone.0154086.
Ghosh C, Bhowmik J, Ghosh R, Das MC, Sandhu P, Kumari M, et al. The anti-biofilm potential of triterpenoids isolated from Sarcochlamys pulcherrima (Roxb.). Microbial Pathogenesis 2020;139:103901. https://doi.org/10.1016/j.micpath.2019.103901.
Kining E, Falah S, Nurhidayat N. The in vitro antibiofilm activity of water leaf extract of papaya (Carica papaya L.) against Pseudomonas aerugenosa. Current Biochemistry 2016;2(3):150-163. https://doi.org/10.29244/cb.2.3.150-163
Hamzah H, Hertiani T, Pratiwi SUT, Nuryastuti T. Efek saponin terhadap penghambatan planktonik dan mono-spesies biofilm Candida albicans ATCC 10231 pada fase pertengahan, pematangan, dan degradasi. Majalah Farmaseutik 2020;17(2):198–205. https://doi.org/10.22146/farmaseutik.v17i2.54444.
Dabija-Wolter G, Al-Zubaydi SS, Mohammed MMA, Bakken V, Bolstad AI. The effect of Metronidazole plus amoxicillin or metronidazol plus penicillin V on periodontal pathogens in an in vitro biofilm model. Clinical and Experimental Dental Research 2018;4(1):6-12. https://doi.org/10.1002/cre2.96
DOI: https://doi.org/10.24198/jkg.v36i3.57014
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Kedokteran Gigi Universitas Padjadjaran
INDEXING & PARTNERSHIP
Jurnal Kedokteran Gigi Universitas Padjadjaran dilisensikan di bawah Creative Commons Attribution 4.0 International License